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1. Introduction

The most venerable, although some feel unromantic, area of psychology is
psychophysics: the attempt to describe and understand the abilities and limita-
tions of people (and other organisms) to sense and identify simple changes in
one or a few aspects of the stimulation impinging on them. Here, more than
elsewhere in psychology, mathematics has played a significant role in the
development of theory. The interplay began over a century ago at the founding
of psychophysics, which can be credited jointly to Fechner's semina12 Elemente

der Psychophysik (1860) and Helmholtz' remarkable work on audition (1863).

Today, one cannot .seriously enter the field without at least knowing well ele-
mentary mathematics. As an illustration of the interplay between data and
mathematical theory, I shall present a self-contained application of mathe-
matics--renewal processes-~to several psychological problems. My tack will be
to devote a sizable portion of the paper to the empirical background so that
the issues treated by the theory will be meaningful. The remainder will out-
line the theory and give several applications of it.

By a simple change in stimulation I mean something like a 100 msec flash
of light with some known spectral distribution, or the monaural presentation of
a pure tone (acoustic sinusoid) of some intensity, frequency, and duration,
and so on., It is a change from one steady state to a different one and then
(usually) back to the original one, where the difference between the two steady
states can be characterized in some fairly simple physical fashion--although
rather more care must be taken to describe the effect of transducers (e.g., ear
phones) than one might at first imagine. Such a change is normally called a
signal, and I shall employ that term.

Typical questions asked by psychophysicists are:

1. To what extent can a person detect a signal of known characteristics?
2, To what extent can he identify the signal presented as one of

several preassigned possibilities?
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3. To what extent can he discriminate as different two signals

presented in close spatial and temporal proximity?
G. To what extent can he scale the magnitude of the change involved
when the signal is presented?

In each case the question is at least doubly ambiguous. Just what do we mean

by "detect," "identify," '"discriminate," and '"scale'"; and what are suitable

"extent'? Of course, it is impossible in a short paper to discuss

measures of
systematically these issues, but some brief remarks will be useful before we

consider any models of processes involved.

2. Some Psychophysical Measures and Functions

When one asks a subject if a change has occurred--was the signal present
or not, which of several possibilities has occurred, or whether one presenta-
tion is the same as or different from another, in all these cases there is
usually a physically correct answer. And so one measure of "extent'" is the
accuracy of his answers. For example, suppose we run a series of trials in
which the same change--say in the amplitude of a pure tone--occurs on a random
50% of the trials and no change occurs on the remaining 50%. Symbolizing no
change as 0 and the change as 1, let Nij’ i, j =0, 1 denote the total
number of trials on which response j was made to presentation i. An
obvious measure of accuracy is the relative frequency of correct responses on

the trials when the signal was presented:

=N /Wy + N )

Py N1

On the assumption of independent trials (an assumption which is approximately

correct for well-practiced observers and which we employ throughout), ﬁll

estimates the conditional probability p of responding that a signal was

1
presented when in fact it was. '

There are at least two difficulties with this measure of accuracy.
First, it totally ignores what happens on the trials when no signal is pre-
sented. Were it true--which it is not--that NOo and N01 are independent
of various experimental parameters, such as the proportion of catch trials or
the instructions to the subject, then perhaps it would suffice to focus on ﬁll
as an estimate of accuracy. In fact, if we provide information feedback on
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each trial about which signal was actually presented, then as we change either
the presentation probability P or the payoffs for correct and incorrect
and p

responses we find that = NOl/(NOO + NOl) covary. Typical data

P
11 01
are shown in Figure 1. The smooth curve (perhaps a straight line in the non-

linear coordinates used) thought to underlie these data points is called an
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Figure 1, ROC curves for three observers from a Yes-No detection
experiment involving a signal in moise (s) versus noise alone (n),
i.e., Y=s=1, N=n=0. The coordinates are normal deviates. (This is
Fig. 4 of Green and Luce, 1973a.)
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ROC (receiver operating characteristic) curve. It describes, in essence, the
tradeoff exhibited by the subject between the two types of errors--false
positives (10) and false alarms (0l1). The form of the curve simply reflects
the familiar experience that under fixed stimulating conditions one can de-
crease one of these errors only at the expense of increasing the other. So

a better measure of what we are after is some parameter or parameters de-

scribing the ROC curve. As anticipated in Figure 1, we will later arrive at
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a theory in which a transformation to normal probability deviates results in an
ROC curve which is close to a straight line, and so two parameters obviously
describe it completely.

The story of measuring "extent' is still incomplete, even in this most
simple of cases, because of the familiar tradeoff between speed and accuracy.
Up to a point, at least, a subject can detect more accurately if the duration
of the signal is longer; this is part of the reason most of us drive more
slowly under foggy conditions. Because the magnitude of the phenomenon is

startling, but not commonly known, some typical data are provided in Figure 2.
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Figure 2. Plots of MRT - T versus signal intensity in dB or log ME,
which is approximately proportioned to intensity in dB. The value

T = MRTmin - 5 in msec (for the Snodgrass data, the loudest signal,

ME = 1500, is not shown). The sources for the data are Chocholle (1940),
McGill (1963), and unpublished data of J. G. Snodgrass (personal com-
munication, 1962). (This is Fig. 7 of Luce and Green, 1972.)
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Observe that over the range of from just detectable auditory signals to very
loud ones, the response time decreases by a factor of at least 3. So we must
adjoin to the parameters describing the ROC curve some measure of time taken
before the response.

Since, in the absence of a theory, it is expensive to collect and dif-
ficult to organize all of the data that can be generated by varing this many
variables, it is customary to fix some while varying the others. Usually the
signal duration is fixed when studying ROC curves, and the frequency of false
alarms is usually required to fall in a narrow range when we study how response
time varies with signal strength.

Identification and discrimination studies with two signals are handled in
much the same way. When we go to more than two signals, there are difficulties
in knowing how to summarize the data, which obviously are considerably more
abundant. Theoretical models usually suggest some simplifying measures, but
since the half-life of specific models in psychology is brief, this is not very
satisfactory for the experimenter. I will not enter into any of these problems
here; see, for example, Luce and Green (1973).

As one moves into these areas, and even more so in the scaling area, one
becomes aware of a basic change in experimental procedure. There need be no
physically correct responses, and so feedback no longer makes obvious sense.
Consider, for example, these two similar experiments. In the first, the
experimenter presents pairs of tones of the same frequency and different ampli-
tudes, and he asks the subject to judge which is louder. If we assume, as is
suggested by all sorts of data, that loudness of a pure tone grows with ampli-
tude, then there is an unambiguously correct answer. Now modify the experi-
ment so that both the amplitude and frequency differ (recall that both affect
loudness, else there would be no reason for a loudness control as well as a
volume control on an amplifier); then there is no longer a correct response.
More generally, if we try to understand the growth of any subjective concept
such as loudness, brightness, painfulness, etc., we are asking questions for
which information feedback does not seem to make any sense because only the
subject can know the answer. Nonetheless, we seem to be able to elicit
systematic and meaningful responses from subjects about such concepts. A num-
ber of methods are in use, and there is much controversy over which is the

best. One of the currently more popular is magnitude estimation, introduced
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and developed extensively by the late S. S. Stevens (1957, 1961, 1966, 1971)

in which the subject is simply asked to report numerically the subjective ratio
of the current signal to some signal presented earlier. Improbable as it may
sound, when the subject is appropriately instructed, the data are exceedingly
regular. To a good first approximation, mean magnitude estimates of signals
that vary in intensity grow as power functions of the usual physical (exten-
sive) measure of intensity. Some data, averaged over subjects, are shown in

Figure 3 (see also Figure 7 in Section 5). The average exponents differ
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Figure 3. Magnitude estimates for loudness and brightness. Each of 32 and 28
observers, respectively, made two estimates of each stimulus, presented in an
irregular order. The resulting numbers were multiplicatively normalized for
each observer to have the same value at 80 and 70 dB, respectively, and the
results shown are the median estimates., (This is Fig. 6 of Stevens, 1957.)
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for different modalities. For example, it is about 0.30 for loudness, whereas
it is about 3.5 for shock (60 Hz, high resistance in series with the subject)

as a function of voltage. Indeed, as Teghtsoonian (1971) has shown, a very
simple relation holds between the exponents and the range of physical stimu-
lation from just detectable intensities to the maximum accepted by the organism.
This is shown in Figure 4, where the smooth curve is that predicted on the

assumption that the same range of numbers is used to match each physical range
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Figure 4. Average magnitude estimation exponents versus the logarithm
of the maximum stimulus range, R. The continuous function is
1.53/1log R, where 1.53 is a fitted constant. (This is Fig. 2 of
Teghtsoonian, 1971.)
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(so one parameter is estimated from the data). Further evidence that this
scaling procedure is meaningful are the results from matching experiments in
which the subject is asked, for example, to match the brightness of a light to
the loudness of a tone. This curve is again a power function with an exponent
which can be predicted from the two magnitude functions on the assumption that
the numbers are matched within a constant factor. Data for various modalities
matched against handgrip are shown in Figure 5; the straight lines are those

predicted from magnitude estimation data.
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Figure 5. Cross modal matches between force of handgrip and nine
other continua. (This is Fig. 1 of Stevens, 1966.)
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I hope that these brief remarks are sufficient to convince you, first,
that a number of regular, readily reproduced functions exist in psychophysics
and, second, that a parsimonious theory to account for all of them does not

immediately come to mind.

3. Classical and Modern Psychophysical Theorizing

We may conveniently date the classical tradition of theorizing to
Fechner and the modern one to World War II. The classical view holds that a
relatively straightforward relation exists between the signal input and the
response output, and the task is to describe it compactly. Put another way,
the whole organism is seen as a sensory transducer, which one tries to de-
scribe in such a way that a small set of estimated parameters is sufficient
to permit predictions in a wide variety of experiments involving the same set
of signals. According to this definition, Stevens and most of those who have
studied magnitude estimation are in the classical tradition, even though the
method is relatively recent. For this reason, some tension has existed be-
tween this group and those in the modern tradition.

Beginning with the war period, the physical theory of signal detect-
ability (developed in connection with electronic detection of aircraft and
sonar detection of ships) was adapted and incorporated into psychophysics,
with the main impact, during the 1950's and early 60's, being due to Tanner
and Swets (1954) and Green and Swets (1966). It explicitly focused on the
tradeoff between errors, leading to an elaborate experimental probing of these
ideas.3 The theory, even in its simplest form, gives a good account of detec-
tion and discrimination data, suggesting that subjects, rather than acting as
simple transducers, are more like statisticians deciding between hypotheses on
the basis of imperfect information. Considerably more than the transduction
of signals is involved because response criteria are subject to experimental
manipulation independent of the signal. The interpretation is that, in some
manner, motivational factors entering through the instructions, presentation
probabilities, and information feedback determine the values selected for the
criteria. Thus, the major change from the classical view is that responses
depend not only on the signals, but on the subject's goals as well. It is

true that classical psychophysicists were to a degree aware of these
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motivational factors--severe reprimands by stern professors had maintained low
false alarm rates among undergraduate subjects--but they did not choose to
study or theorize about the error tradeoff which they were manipulating. In
particular, they were highly insensitive to the fact that the slope of the ROC
curve is close to infinite at a low false alarm probability (p01). To this
day, much work in vision continues to ignore the ROC curve.

In spite of its continued widespread use and success, the theory of
signal detectability has three telling weaknesses. First, and in practice
the most damning, is the grave difficulty theorists have had in generalizing
it to designs involving more than two signals. The basic problem is that the
simple numerical partition of the two-signal case generalizes to unspecified
regions in (n-1)-dimensional space in the n-signal case. Second, at a con-
ceptual level it is quite unclear how people are supposed to accumulate the
information they are assumed to know about the distributions of likelihood
ratio under the two hypotheses. Interpreted literally, a person shpuld not be
able to detect signals without extended periods of practice in a psychophysical
laboratory, which is absurd. And third, the theory lacks any natural role for
time in making psycholophysical judgments. The only proposal is that sampling
sensory information requires a quantum of time, and repeated samples are taken
until a Wald-type decision criterion is met (Audley and Pike, 1965; Laming,
1968; Stone, 1960). Although some data support this general view of a vari-
able decision time, there is no strong empirical support for the idea of a
natural quantum of time. Part of the difficulty is that some data require
the quantum be no more than a millisecond or two, whereas others suggest that
something of the order of 100 msec would be natural.

A fundamental feature of this modern approach is the division of the
problem into two parts--the sensory transduction into a hypothetical internal
representation of the signal (likelihood ratio) followed by a decision pro-
cedure which accepts this representation as one input and some of the motiva-
tional features of the design as another input which are then combined through
a decision rule to select a responsge.

A development from another quarter--neurophysiology-~-meshes neatly into
this point of view. In the early 1940's (Galambos and Davis, 1943) and much

more intensively recently (Kiang, 1965, 1968; Rose, Brugge, Anderson, and Hind,
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1967) recordings have been made on single peripheral auditory nerve fibers of
cats and monkeys under a variety of stimulating conditions. 1In brief, the
message is that the transduction effected by the ear is wildly nonlinear and,
although moderately simple in its way, there is little likelihood that we could
have inferred it from overall psychophysical data--at least no one did. These
physiological data suggest a somewhat different strategy for psychophysical
theorizing, namely accept the neurophysiologists' description of the recording
of the signal into the language of pulses in the nervous system, and then con-
sider what the central nervous system (CNS) does functionally as a decision
device operating on this information. Given the recoding, or more accurately
a model of it suggested by the data, our problem is to guess at simple decision
rules that are adequate to account for the range of psychophysical data. This
is the strategy pursued during the past 10 years by several people; perhaps the
most significant papers are Green and Luce, 1971, 1973a; Luce and Green, 1972;
McGill, 1963, 1967; Siebert, 1965, 1968, 1970.

What surprises did these physiological data held? There were several,
some having to do with intensity, some with frequency, and some, not fully in,
with combinations of tones. Here I shall focus only on intensity. One way of
describing these data is to say that the neural pulse trains are point events
from a stochastic process in time, whose parameters are controlled by the
signal. Even if these parameters change instantaneously with changes in the
signal, it takes time to accumulate enough pulses for the CNS to realize this.
Moreover, the parameters are such that the firing rate on a single fiber re-
mains at its (non-zero) resting level up to some intensity (this value depends
on the frequency of the signal) at which point it increases by a factor of
from 2 to 10 over an intensity change of two to three orders of magnitude
(20-30 dB), after which it maintains a nearly constant rate. Although there
do not yet exist physiological data to support it, this suggests that the full
dynamic range of 12-14 orders of magnitude is shared by a number of fibers
which, as a bundle, constitute a single channel.4 We shall assume that such
a channel exists functionally and that it, in effect, has a dynamic range of
between two and three orders of magnitude. This postulate is distinctly
hypothetical at present. Note that the transduction from intensity into
neural pulses includes a simple nonlinearity, namely, that the rate is a non-
linear function of intensity (approximately, a power function, see Sections 5

and 6) and it includes a much messier one, namely, that the observable is not

113



the instantaneous rate, but a discrete sequence of pulses,

In addition to the partial representation of intensity on individual
nerve fibers, intensity is also represented across fibers since the total num-
ber of active fibers increases with intensity (see 4). Thus, two extreme

postulates suggest themselves. One, known as a place theory, assumes that the

rate information provided by individual fibers is ignored except to decide
whether or not a fiber is active and it is simply the total number (or, per-
haps, set) of active fibers that carries intensity information. The other
extreme, sometimes known as a frequency, periodicity, or better, temporal
theory, assumes that the pulse rate on single fibers carries the intensity
information and the only role of the many active fibers is to build up
channels to cover the full dynamic range and to increase the total sample size
that can be obtained in a brief time. Obviously, mixes of these two theories
are also possible,

I do not know of any decisive argument to select between them, although
to my mind certain weak arguments tend to favor the temporal view. In particu-
lar, there is no very natural way in the place theory to account for the large
changes in response time with intensity, whereas there is (see the next sec-
tion) in the temporal one. In any event, I shall pursue the temporal theory

here,

4. Counting and Timing Models

According to the temporal view, then, whenever we ask the subject to
make judgments about the intensity of signals, this is translated by the CNS
into questions about estimates of rates from a number of parallel channels,

So fundamentally the problem is reduced to one of estimating rates from a
sample of a stochastic process. Our discussion of how this may be done follows
Luce and Green (1972) and Green and Luce (1973b).

The problem faced by the CNS is analogous to that of a committee standing
on the overpass of a highway with J lanes, charged with detecting, rapidly
and accurately, changes in the rate of traffic flow.5 Suppose that the rate
in each lane can vary from about one per second (which would occur with traffic
flowing at 60 mph and spaced at 88 ft.) to one every 15 minutes. This range

of two orders of magnitude is comparable to our estimates of the range handled
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by a neural channel, but the absolute rates are about 1000 times faster--from
1000 per sec to 10 per sec, or even less. How should the committee proceed?

The most obvious way is to generalize the usual method of estimating a
heart rate: allocate to each person as many lanes as he can monitor and have
him count the number of cars that pass in each during a fixed period of time
and submit these numbers to the chairman, who then estimates the rate by cal-
culating the average count-to-time ratio per lane. When the ratio in two
successive time intervals differs enough, he concludes that there has been a
change in rate. We call this a counting procedure because the random variable
observed is the count obtained in a fixed period of time. The difficulty with
this approach is that the problem in question is not really comparable to
heart rates, which differ by at most a factor of 3, not 100. When the range
is so large, no single choice of a time seems appropriate. If one chooses a
short time, the estimates for slow rates degenerate; if one chooses a long
time, the estimates for fast rates are overly good and terribly slow. A fixed
time and a large range automatically produces no variation in response time,
but a large variation in sample size and so in the quality of the estimate.

This suggests holding the sample size more nearly fixed by fixing the
size of the count to be obtained from each lane and simply recording the time
it takes to get that count, and this time is reported to the chairman. We call
this a timing procedure because the observed random variable is the time re-
quired to achieve a fixed count. Such a rule has the clear virtue of ex-
hibiting one qualitative feature of the data not captured by the counting rule,
namely, that responses to slow rates are slow and to fast ones, fast.

Although these data clearly favor a timing procedure over a counting one,
one wonders if there may not be circumstances when the counting rule is used.
One argument for suspecting that this may be possible is the fact that to make
a timing estimate the CNS needs, functionally, to be able to count, to time,
and to divide; however, with all three of these abilities available, it should
be able to institute a counting rule when that is appropriate. The only prob-
lem, it seems, is to motivate the subject sufficiently to relinquish the uni-
form quality of estimates for all intensities. One way to do this is to make
it expensive for taking a long time in reaching a decision, which he will tend
to do for weak signals (slow neural pulse rates) when using a timing rule. Of

course, it is possible that the brain is so inflexibly wired that only the
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timing rule is available; if not, however, penalties for slow responses should
effect a switch.

The next question is whether we have any chance of observing a behavioral
difference. Here, finally, we must invoke some mathematics. Consider the fol-
lowing experimental design. There are two tones, 0 and 1, which differ only in
intensity, 1 being more intense than 0. On each trial, exactly one is pre-
sented, the schedule being random, but equally probable. A signal is continued
until the subject responds by identifying which he thinks it is, after which
there is feedback as to the accuracy of his response and the payoff he is to
receive. The accuracy payoff oij is a sum of money for response j to
presentation 1i; it is positive when i = j and negative when i # j; wvary-
ing the values oij is one way to generate an empirical ROC curve. The dead-
line payoff is simply a fine (with no payment for accuracy) whenever a response
is slower than the deadline.

At a theoretical level, let us suppose that when a signal is presented,
there are identical renewal processes on each of the J channels. By a
renewal process is meant a point process in time such that the time between
successive points--interarrival times (IAT)--are independently and identically
distributed. The best known example is the Poisson process in which the dis-
tribution of IATs is exponential; it is the model of pure temporal uncertainty,
somewhat analogous to a uniform distribution in the finite case. Obviously,
the model is already highly idealized since all of the channels are assumed to
be statistically identical, which is not true of the fibers. Denote by Mi
and Vi the mean and variance of the distribution characterizing the renewal
process for signal i, and suppose that M, > M (the more intense signal

0 1
has the higher rate) and that

Vi and Mi/Vi are both strictly increasing functions of Mi (1)

(This is obviously true in the Poisson case since Vi = Mi.) If a counting
rule is used, we assume a fixed time § (which, however, is some function of
the deadline imposed and so can be manipulated experimentally) during which a
count is observed. If a timing rule is used, we assume a fixed count X + 1
per channel during which the time for ¥ IATs is observed. The decision must
rest either on the random variable N, which is the total count over the J
channels observed in time §, or the random variable I, which is the total

time for ¥ IATs summed over J channels. Since the mean time between pulses
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is smaller for the more intense signal, it corresponds to a larger count and a
smaller overall time. So plausible decision rules (which have been shown in
the theory of signal detectability to fulfill various conditions of optimality)
are to establish criteria, dependent upon the payoff structure, and to respond
that the more intense signal was presented whenever either the count exceeds
its criterion or the total time is less than its criterion, depending on which
rule is in use.

Assuming that is so, let us derive the form of the ROC curve in each
case. First, the counting rule. We invoke the following well-known central
limit theorem (Feller, 1966, p. 359): 1in a renewal process with E(IAT) = M
and V(IAT) = V, the number of counts N(r) observed in time T is

asymptotically normally distributed with mean T/M and variance TV/M3, i.e.,

lim P rgiil—g—{ég <z| = Jz 7(0,1) (2)
T L(TV/M ) -
where
2 2
W(u,cz) _ 11/2 e-(x—u) /20 . (3)
2m o

Assuming that J6 = v 1is sufficiently large for this approximation to be

good, we see that with a criterion c¢, we may write
z'
~ | 1

where
c + J6/Mi
z = (5)
L (JéV./M?)l/z
1 1

is the normal deviate corresponding to the probability Pige Frequently it is
convenient to represent a probability in terms of its normal deviate,
especially when, as in this case, two deviates are linear functions of one

another since, by eliminating c¢, we obtain

\Y 3(1/2 MM (1/2
o[ |y e (1 ) ®)

as our expression for the ROC curve. By assumption 1, the slope of this

1/2
curve is less than 1; in the Poisson case it is (Ml/MO) / .
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For the timing model, the argument is similar, but is based on the
central limit theorem (Feller, 1966, p. 253), which for a renewal process
with E(IAT) = M and V(IAT) = V asserts that the total time I required
to accumulate {4 IATs is asymptotically normally distributed with mean M

and variance {4V, 1i.e.,

Z
timie p | AU ] [ no,. 7)
L - () -

Taking £ = J{, we find immediately that the ROC curve is given by

v..1/2 M -M
2 = () 2, otz Lo M 8)
1 \Y 0 1/2 ?
1 \Y
1
which again is a straight line. By assumption 1, it has a slope greater than
1, equal to MO/Ml in the Poisson case. Thus, the slope of the ROC curve is
a clear criterion as to which procedure is in use.
A second criterion can be found by looking at the response times. These
times are the sum of two parts: that taken up accumulating information about

the signal, called the decision time, and all other times, including those for

computations, transmissions, muscle movements, etc., called the residual time.

Let the mean of the residual time be denoted by T; then for the counting

model the mean response time for signal 1 and response j 1is

MRT,, =T + 8. (9)

The prediction is that it is independent of i and j; indeed, if the deci-
sion and residual times are independent, it is not just the mean, but the
whole distribution that is predicted to be independent of i and j. In the
timing model, the decision time is more complicated because it is determined
by the slowest of the J channels to observe X IATs. Denote by h(J,X,o)
the mean of this time when the renewal process has mean 1 and variance 02.

Then, for a process with mean M, and variance Vi’
i

MRT,., = T + h(J, X, V}/z
ij i

/MM, (10)

In the Poisson case, Vli/z/Mi 1, and so for it and any other case in which

this ratio is nearly constant we may eliminate h and write
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e - (Qpar, - o(32 - 1) a
0 M1 1 M1 ’
where we have dropped the response subscript j since, by Equation 10, it does
not matter. So, as we vary the deadline, we should find a linear relation be-
tween the mean response times; moreover, the slope should be identical to that
of the corresponding ROC curve.

Green and Luce (1973a) ran three observers in such an experiment using
a faint 1000 Hz tone in noise for 1 and noise alone (0 intensity signal) for 0.
The design was as described, with deadlines varying from 250 msec to 2000 msec.
When the deadline applied to all trials, the mean response time was the same in
all four cells except for the two longest deadlines, where there was some tend-
ency for the signal trials to be slower than the noise ones; we return to this
discrepancy below. The ROC data (Figure 1) were well fit by straight lines
with estimated slopes of 0.92, 0.90, and 0.69, all supporting the counting
model. When three other observers were run in exactly the same experiment
except that the deadline applied only to signal trials, both the MRT and ROC
data were well approximated by straight lines and the pairs of estimated slopes
were ' =

1.34, 1.30; 1.48, 1.47; and 1.38, 1.37.

The timing model was clearly supported.

A striking way to show up the differences between the models and between
these two sets of data is as a trading relation between speed and accuracy. A
very common measure of accuracy, suggested by the theory of signal detect-

ability, is to compute the value of =z called d', corresponding to

1’
z, = 0. For the counting model, Equation 6 yields

0
ar = ast/?, (12)

and for the timing model Equation 8 yields
M

y __0 1/2
d = 1/2 AM 5 (13)
M
1
where
M, M, 1/2
_ JL/2f, O 1N/l
A=J (1 MO>(V1) . (14)

Eliminating & between Equations 9 and 12 yields
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v
Hi

A(MRT - T), MRT
@H? = (15)
0 MRT < T

?

for the speed-accuracy trade in the counting model.
For the timing model, Equation 10 must be developed more fully before we
can eliminate X. If we let WH denote the distribution of the ¥ IATs,

then by definition )
! © X J-1
h@K0) =3 [ xy | [ v o) ay|  ax
0 0

Assuming that WH is approximately normal, which for ¥ = 5 is not a bad

approximation in the Poisson case, it follows readily that
1/2
h(J,K,0) =X + 1 + (X+1)"""H(J),

where H(J) is the mean of the largest of J random variables distributed

N(0,1). 1If we substitute this into Equation 10 and introduce the variable

T, =MRT, - ¢ - M, - V%/z

1 1 1 1 H(J)

and the constant

_ 12

Bi_Z

H(I)/M,,
1

then eliminating ¥ between Equation 10 and Equation 12 yields the speed-

accuracy trade

2

M M, B 4T
0 ii 2 11/2}
2 MM.A{T1+ 2 <(Bi+2) [@; + 20 + 3] > T, 20
@ =( MM i (16)
0 , T.<O.

1

Three qualitative differences can be seen by comparing Equations 15 and

16. First, the last point for which d' = 0 1is larger in the timing model

1/2

than in the counting one by the amount Mi + Vi H(J). Second, because the

times MRTl and MRT2 are different in the timing model, there are two

trading relations. Third, the initial slopes of Equation 16 (timing) are

1/2 and

greater than that of Equation 15 (counting) by factors (MO/Ml)
MO/M1° Figure 6 shows the data plotted in this way, with the data for the

observers combined in the first experiment and separated for clarity in the
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Figure 6. Plots of d' versus MRT for two experimental conditions
(see text). This is Fig. 11 of Green and Luce, 1973a.)

second one. We see that the qualitative predictions are sustained. In fact,
the growth of the function in the second experiment is so much more rapid than
in the first that the accuracy at long deadlines is considerably greater using
the timing rule than the counting one. The evidence suggests that two of the
three observers realized this and switched to timing behavior for the long
deadlines, thus producing the discrepancy in times mentioned earlier.

Whether or not one takes seriously the theoretical interpretation given

these data, two points are worth noting. First, the theory led to running the

121



experiment. BSecond, the data make it unambiguously clear that different con-
trols on the subject's timing of his responses make for rather different results
about the ROC curves and the speed-accuracy tradeoff. Although experimenters
have for a number of years taken care to control and report signal durations,
for their values can affect the results, the data discussed above strongly sug-
gest that such control may not be sufficient to encompass the temporal subtle-
ties involved. One must keep in mind that at least two modes of behavior are

available, and one must seek experimental designs that elicit the one desired.

5. Absolute Identification and Magnitude Estimation

This and the next section illustrate some of the difficulties encountered
by this theory. Those described in the present section are entirely conceptual,
whereas those in the next are, at this stage, primarily technical.

Both absolute identification (AI) and magnitude estimation (ME) experi-
ments involve the presentation on each trial of just one of n signéls, with
the sequence of presentations being random and equiprobable. (In much of the
ME literature, the signals are only repeated a few times and the data are aver-
aged over observers, but here we will consider only the data from individual
observers with each signal being presented repeatedly.) Assuming that the
signals vary only in one physical dimension--say intensity or frequency--the
observer may attempt to identify absolutely each presentation, usually by asso-
ciating the integers 1, 2, ..., n with the ascending sequence of signals. In
ME the observer is free to associate any positive number (usually limited to
rationals or some restricted decimal representation) to each presentation, but
subject to the request that his assignments preserve his sense of the subjec-
tive ratios among the signals.

It has been known for a long time (the earliest study was probably Pollack,
1952) that with 10 or more signals the probability of a correct identification
in the AI experiment is approximately independent of the range of the signals so
long as it exceeds some minimum value. For intensity of 1000 Hz tones, the min-
imum range is about 20 dB. Put another way, then, increasing the separation be-
tween successive signals from 2 dB to 6 dB has virtually no effect on the proba-
bility of correctly identifying them, provided there are enough signals. Of
course, when there are only two signals to be identified, such a change alters

the probability from somewhat above chance (1/2) to virtually perfect (1).
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response. A prime added to any symbol simply refers to the trial preceding
the one for which an unprimed symbol is used. Our response hypothesis, then,

is simply

R T'
'E’_i—' a7)

By elementary distribution arguments, we see that

P(‘E‘T=x) = P(%=x)
k'-1, , k'
= B(klk') > (u /ui+k' ’ (18)
’ 1+ p,'x/p)
where
B(k’kl) = ik - 1)!(k - 1)!

(k + k' - 1) °

Equation 18 is the beta distribution of the second kind. Its mean m and

2 . .
variance ¢  are readily calculated, from which

() - s
Observe that the right side is independent of the rate parameters u and ',
but since k = J{ may depend on intensity (through J) the ratio can still
be a function of intensity.

In data from several observers who responded several hundred times to
each of 20 signals spaced equally in dB over a 50 dB range, for any given
intensity ratio (equal dB difference) there is no evidence that o/m changes
greatly as the absolute level of intensity changes. This suggests that J
is nearly independent of intensity and so k =k', For each intensity ratio
we therefore average all of the data over the different levels of intensity,
obtaining for one observer the plots of m and o/m versus intensity shown
in Figure 7. The first thing to note is that m grows approximately as a
power function of intensity, which if the sample size is independent of in-
tensity means that |, also grows, approximately, as a power function of
intensity (see Section 6 for further evidence on this point). Second, al-
though o/m 1is probably a constant for signal ratios in excess of 20 dB,
it decreases by a factor of as much as 3 for smaller ratios. Assuming k = k'
in each case, we get estimates of sample sizes of roughly 19 and 167 respec-

tively. The former seems very small.
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The question is whether we can make theoretical sense of these data in
a way that also accounts for AI results. One idea, which although it has not
yet been worked out in detail seems to have the correct qualitative features,
is that the CNS is able to focus only on a limited range of intensities at any
one time. An extreme version of this model supposes that it can collect a
large sample, say 167, only for rates falling in a range corresponding to
about 20 dB, and for rates outside that range, only a much smaller sample,
say 19, is possible. This makes sense if we postulate that each nerve fiber
has only dynamic range of about 20 dB, as seems to be the case, and that as
intensity is changed some fibers are saturated while others are brought into
play. The assumption would then be that the CNS can monitor fully, with its
largest sample size, only those fibers corresponding to one 20 dB range, and
that activity outside that range is monitored only with much smaller samples.
This assumption makes the 20 dB limit in the physiological data account for
the 20 dB edges in both the AI and ME experiments. Furthermore, it suggests
experiments to test itself. If we can manipulate the range that the CNS is
monitoring, then we should get predictable phenomena. For example, by intro-
ducing sequential dependencies in the signal presentation schedule, we can
make the probability that two successive signals are within 20 dB of each
other as low or high as we choose, which should affect the tendency of the
subject to monitor near or far from the value of the previous signal. If we
then compare the behavior to the exceptional signals--the near ones when near
ones are improbable and the far ones when far ones are improbable--with the
behavior to the common ones, we should find the former much more variable than

the latter.

6. Response Time to the Onset of a Signal

Our last application illustrates the fact that problems that are simple
to formulate in the theory do not necessarily lead to solved mathematical
questions.

Consider an experiment in which a signal comes on at a random time after
a warning signal, and the observer is to respond to it as rapidly as possible,
without, however, making too many anticipatory responses. Formally, the data

from each trial consist of a pair of random variables § and R, where §
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is the time at which the signal (say, a change in intensity) comes on and R

is the time at which the subject responds. Denote by
f(x,t) =PR=1¢t | § =x) (20)

the conditional probability density that the response time is t when the

signal onset time is x, and by
g(x) = P(§ = x) (21)

the density of the signal onset times, which is under experimental control.
In terms of the model, we suppose a Poisson process with parameter v

until § and one with parameter yu (> v) after §. Some sort of decision

rule will be applied to this stochastic process, leading to a decision at

time D (< R) to intiate the response. Whatever that rule may be, let
L(x,y) =PD =y | §=x) (22)

denote the conditional probability density that the decision time is y when
the signal onset time is x. We refer to the time R - D as the residual
time-~it consists of all the times consumed by the nervous system aside from
those taken up in arriving at a decision. We make the following assumptions
about the residual time:
(i) R

(ii) R -D and § are independent random variables.

R

(iii)

- DR and D are independent random variables.

- D 1is a bounded random wvariable.

~

Empirically, there is some doubt whether (i) and (ii) are strictly correct.
For example, the readiness to respond may be affected by the overall delay,
and so by the value of §. The evidence in favor of (iii) is the boundedness
of response times to intense signals. The bound appears to be of the order of
300 msec. By (ii) one can reasonably postulate a density for R - D, call

it r, and by (i) we see that

t
£Ge,e) = [ 26oyr(e - ) dy. (23)
0
It is convenient to divide the observable response time density into two parts

corresponding to anticipatory responses and those that appear to be in response

to the signal, specifically
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I g(x)f(x,t) dx

t
£.(8) = S (24)
I g(x) dx
t
and t
I g(x)f(x,t) dx
__0
fo_g(t) = - . (25)
j g(x) dx
0

In the experimental analysis and data given below, the onset density
was exponential,

g(x) = re M

The reason for this choice is that it makes ineffective any possible strategic
considerations in responding based on how long the subject has waited.

To the best of my knowledge, the following basic question has not been
answered: given a payoff function P(§,R) (where, presumably, P(S,R) <O
for R < §8), what is an optimal decision rule to detect a simple increase
(or decrease) in the parameter of a Poisson process? The answer to this might
provide some suggestions about the sorts of rules employed by the CNS.

A far simpler question, although not without difficulties, is to postu-

late the simplest rule one can think of, derive properties of 4, f and

f
R-S’
thought of (see Luce and Green, 1972), which is both the most responsive and

R’
and compare the latter two with data. The simplest rule we have

most variable way to detect a change, is to select a criterion B and compare
each TAT with it, initiating a response the first time after the warning
signal that IAT < B. The value selected for B8 will depend, of course, on
the magnitude of the change to be detected and the payoffs. Assuming this
rule and denoting by Lo the density { conditional on a pulse at time O,
elementary probability considerations lead to the following pair of integral-

difference equations for { and Lo:
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t
J ve vyio(x -y, t -y)ady, t < x

L(x,t) = 0
t
-vy ) ) -vx - (y-x) _ =
j:ve Lo(x y, t - y)dy + e fxue LO(O, t-y)dy, tzx
[ ve ™ E, t <x
e-vxue—u(t—x), X=t =8B X <B
1 (x,t) =é e VE B0 o), x<pst (26)
ve_vt, t =8
- x 2B
Ve P - B, v - ), B <t

The technical problem is to solve these equations. Although this has
not been done fully, enough is known to suggest that the nodel is not wholly
absurd. In particular, for sufficiently large t, the boundedness of the
residual times plus the fact that a slow exponential decay dominates the

solution to Equation 26 permits one to show that

£, (£) = pe” (WHVIE (27)
where

V= u(d - em(VDIBy (28)
and

Fo g(t) =Be™'E, (29)
where

p' = ;“éﬁag (30)

and A and B are some functions of the parameters. Of course, the tails of
the distributions constitute only a fraction of the data and we would really
like to know the form of the entire solution, but at present we have no option
but to waste much of the data.

A first test of the model is to see whether the tails of the distribu-

tions are approximately exponential. A sample of data is shown in Figure 8,
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for times greater than 1/2 sec, and the approximation is not bad. Using
Equations 27-30 to estimate v' and ' for different intensities yields

Figure 9. Observe that the growth of '/v' is approximately a power function
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Figure 9. Ratio of Poisson parameters estimated from the tails of
the reaction time distributions from two observers as a function
of signal-to-noise ratio in dB. (This is Fig. 9 of Luce and Green,
1970.)
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of intensity, which agrees with the conclusion from ME data (Section 5). How-
ever, there is a considerable discrepancy in the estimates of the exponents:
something of the order of 0.30 £ 0.15 from the ME data for a variety of sub-
jects and about 1.5 from these reaction time data,

As Luce and Green (1972) pointed out, one source for the discrepancy is
that the reaction time analysis is for only a single channel, and the following
model suggests that this may be the only source. Suppose that the single
channel analysis applies independently to each of J parallel channels, each
with a criterion &6, and that a decision does not initiate a response but
rather causes another channel to fire. This common channel, which receives
inputs from each of the J channels, applies the same decision rule, but with
criterion B, and it initiates a response whenever two of the J channels
fire sufficiently closely.

If the rate of the underlying process is |, then the mean IAT of the

decision process is
1

E———— (31)
p( - e

as can be shown by deducing the Laplace transform of Lo(O,t) from Equation 26,
and then calculating the mean in the usual way. By a well-known theorem (Cox,
1962, p. 77-79) the superposition of J independent, identical renewal pro-

cesses approaches a Poisson process as J - »; moreover, its rate is given by
TR = J|_1,(l - e'].l.é) . (32)

If we assume that both & and B are sufficiently small, so that we may
use linear approximations to the exponentials in Equations 28 and 32 and drop

the term B in Equation 30, we have

' %12 %
il s il ML O 6

N

This neatly accounts for the factor of 4 discrepancy between the ME and

reaction time estimates.
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7. Concluding Remarks

I hope that the following points have become clear as a result of my
illustrative models.

1. Psychology has empirical problems of some complexity which can be
significantly illuminated by using probability models accessible to under-
graduate students,

2. As in physics, radical oversimplifications (identical channels, the
simplest of decision rules, Poisson processes) of the micro-structure (neural
pulse trains) can, if handled with care, provide adequate qualitative and even
quantitative models of the macro-structure (psychophysics).

3. Courses on stochastic processes for social science majors probably
should include some material on continuous-time stochastic processes, espe-
cially Poisson processes and perhaps more general renewal ones. Psychologists
are generally less familiar with such processes than with discrete time ones
(especially Markov chains), and as a result they have developed little theory
for situations in which responses can occur at any time (e.g., Skinnerian
operant conditioning experiments) and they tend to employ experimental designs
with a trial structure, which may very well seriously distort an organism's
performance from what it would be under more natural conditions. Moreover, as
I have tried to demonstrate, continuous time processes are probably satisfac-
tory models for some neural activity and certainly can serve as idealized

underpinnings for psychological theories.

Footnotes
Note: Figures 2, 3, and &4, copyrighted by the American Psychological
Association, reprinted by permission.

1. This work has been supported in part by a grant from the National Science

Foundation to the University of California, Irvine.

2. Not everyone regards Fechner's influence as salutary. The widely known
American philosopher and psychologist William James (1890, p. 533,34

commented as follows:

"In 1860, Professor G. T. Fechner of Leipzig, a man of great
learning and subtletly of mind, published two volumes entitled
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'Psychophysik,' devoted to establishing and explaining a

law called by him the psychophysic law, which he considered

to express the deepest and most elementary relation between

the mental and the physical worlds. It is a formula for theee e e
connection between the amount of our sensations and the amount
of their outward causes. Its simplest expression is, that

when we pass from one sensation to a stronger one of the same
kind, the sensations increase proportionally to the logarithms
of their exciting causes. Fechner's book was the starting

point of a new department of literature, which it would be
perhaps impossible to match for the qualities of thoroughness
and subtlety, but of which, in the humble opinion of the present
writer, the proper psychological outcome is just nothing."

This not withstanding, as late as 1961 Stevens titled a paper

"To honor Fechner and repeal his law."

The earlier work of Thurstone (1927) has some of the same formal
characteristics as the theory of signal detectability, but he and his
followers failed to emphasize the experimental manipulation of errors

and so did not have the empirical impact they might otherwise have had.

How many fibers go to make up a channel, and how many channels are there?
No one really knows, but some bounds can be set. If each fiber covers
something just under two orders of magnitude, then anything less than 10
fibers per channel would be inadequate. Since there are estimated on
anatomical grounds to be something of the order of 30,000 peripheral
auditory fibers, the maximum number of channels is 3,000. If, as one
would guess, there is rather more overlap of fibers making up one
channel, something considerably less than 3,000 channels is to be
expected. Later, in Section 5, we will cite some psychological data
which under one interpretation suggest there are about 170 channels.

It is very doub;ful that this means that there are something over 100
fibers per channel, but rather that the channels are frequency specific
as well. The physiological data make clear that individual fibers are
sensitive to a band of frequencies, and psychophysical data have long

"critical"” frequency bands.

been interpreted as supporting the notion of
Were we to assume 15 frequency bands and 12 intensity bands, then 170
fibers in each frequency-intensity band would account for the total

number.
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5. This assumes that the number of channels is independent of frequency.
0f course, as should be clear from footnote 4 and is certainly clear
from the physiological data, the number of active fibers increases
with intensity, but that does not imply one way or the other anything
about the number of channels. Certainly, it would be simpler in the
theory for J to be a constant, and as we will argue in Section 5,

some psychophysical data suggest it may be.

6. The terms absolute judgment and category experiments are also commonly
used.
7. Note that because the 20 signals were presented with equal probability,

the sample size decreases with increasing signal ratio: from 366 at
2.5 dB, through 195 at 20 dB, down to 25 at 47.5 dB. This accounts for

the raggedness of the right end of the g/m plot.
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